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Singularities in solutions of the classical boundary-layer equations are considered,
numerically and analytically, in an example of steady hypersonic flow along a flat
plate with three-dimensional surface roughness. First, a wide parametric study of the
breakdown of symmetry-plane flow is performed for two particular cases of the
surface geometry. Emphasis is put on the structural stability of the singularities’
development to local/global variation of the pressure distribution. It is found that,
as usual, the solution behaviour under an adverse pressure gradient involves the
Goldstein- or marginal-type singularity at a point of zero streamwise skin friction. As
the main alternative, typical of configurations with favourable or zero pressure
forcing, an inviscid breakdown in the middle of the flow is identified. Similarly to
unsteady flows, the main features of the novel singularity include infinitely growing
boundary-layer thickness and finite limiting values of the skin-friction components.
Subsequent analytical extensions of the singular symmetry-plane solution then
suggest two different scenarios for the global boundary-layer behaviour: one implies
inviscid breakdown of the flow at some singular line, the other describes the
development of a boundary-layer collision at a downstream portion of the symmetry
plane. In contrast with previous studies of the collision phenomenon in steady flows,
the present theory suggests logarithmic growth of boundary-layer thickness on both
sides of the discontinuity. Finally, an example of numerical solution of the full three-
dimensional boundary layer equations is given. The flow régime chosen corresponds
to inviscid breakdown of a centreplane flow under a favourable pressure gradient and
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46 8. N. Timoshin and F. T. Smith

development of the discontinuity/collision downstream. The numerical results near
the origin of the discontinuity are found to be supportive, producing quantitative
agreement with the local analytical description.

1. Introduction
(@) Background

The present article is aimed at further understanding of singularities encountered in
solutions of the laminar steady three-dimensional boundary-layer (3-D BL)
equations in the classical formulation, i.e. with the pressure gradient given in
advance. The study is concentrated around special properties of 3-D BL flows
stemming from the mixed parabolic-hyperbolic nature of their governing equations,
the most remarkable of which are probably the occurrence of discontinuous solutions
and the development of blow-up singularities.

The motivation for this work comes from the significant role of the classical BL
concept in the modern theory of high-Reynolds-number fluid dynamics, especially in
the theory of separated flows and, surprisingly enough, in the description of strongly
nonlinear stages in laminar—turbulent transition. The subject has been quite widely
discussed in original articles and monographs, and so just a few major applications
of classical BLs are pointed out below. First, following Prandtl (1905), the classical
BL approach is used in aerodynamics, biomechanics, geophysics, etc., as a fast and
often accurate method for predicting dynamical and thermochemical properties of
laminar viscous flows at large Reynolds numbers. Also, a number of existing
empirical models allow for the properties of transitional/fully developed turbulent
flows to be incorporated quite easily. In all these cases the ‘attached BL strategy’
is used, assuming that the solution can be obtained successively in the two major
regions, those of the external inviscid flow and the thin viscous layer near the wall.
The results tend to be in line with experimental observations and numerical solutions
of the full Navier—Stokes equations, even at moderately large Reynolds numbers
(Re = 10%-10%), but only for configurations sufficiently elongated in the streamwise
direction, e.g. a flat plate without incidence (see Blasius 1908 ; Dennis & Chang 1969;
Nishioka & Miyagi 1978). For more complicated geometries, the solution of the BL
equations normally terminates at some singular point, or at a line in the 3-D case.
(That is for the laminar régime, which is our main interest here; the attached-flow
strategy tends to work even better for turbulent modelled BLs, as Prandtl and many
references thereafter have pointed out (see, for example, Neish & Smith 1992)).
Precise knowledge of the singular solutions is therefore necessary to organize the
numerical process correctly and avoid mistreatments in the final results.

Second, the breakdown of the classical solution physically indicates: (a) the strong
influence of separation/vortex shedding on the entire flow field; (b)) a more
complicated multi-zoned solution structure; (c) strong interaction between the
viscous and inviscid flow, especially near separation/reattachment or corner points
of the surface; and (d) even further complications caused by the generally observed
transition of the detached shear layer, with additional large-scale or small-scale
oscillations, 3-D vortical structures, and so on. As an alternative to the classical
approach, the modern asymptotic treatment of high-Re flows suggests the ‘ viscous-
inviscid interactive’ strategy as a key, with features (a—c) above being taken into
account through detailed description of all the asymptotic structure (see, for

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

A

R
\\ \\
P

/

Py
|\

Y

AL

THE ROYAL
SOCIETY

OF

2
=
25
&
@)
7
Q
=
a5
a

TRANSACTIONS

THE ROYAL A
SOCIETY /4

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Three-dimenstonal boundary layers 47

example, review articles by Stewartson 1974, 1981, Neiland 1981, Smith 1982a,
1986 and the book by Sychev et al. 1987). The forecast with respect to point (d)
above is also promising in view of the linear and nonlinear instabilities in separated
flows (Brown et al. 1988; Smith 1986; Vickers 1992; Elliott & Smith 1987). In
simplified versions of the interactive strategy, but based on a rigorous asymptotic
description, a number of approximate sets of equations have been proposed for
computing separated/transitional flows in various applications, at finite Reynolds
numbers. The most successful models elaborate features (a,c,d), whereas compu-
tational efficiency often stems mainly from the diminished influence in the tiny
asymptotic structure of the complex flow field (b) (see, for example, Davis & Werle
1982; Smith et al. 1984; Edwards 1987). Asymptotic theory has already explained
rationally many major properties of steady and unsteady 2-D separations. However,
it is felt that much more work is necessary in the 3-D case; for instance, the theory
of open-type separation (Maskell 1955; Lighthill 1963) remains incomplete so far as
its origins are concerned (but see Smith 1978). In this context an analysis of the
classical solutions can reveal further useful guidelines towards the theory of fully
3-D BL separation.

Third, the link between the breakdown of the classical solution and the
development of separated flow is not always evident. For, as a rule, the separation
position has no direct relation with the position of singularities encountered in the
attached strategy. However, in some special cases, with or without interaction, the
classical theory does lead to correct prediction of the separation point. These cases
are found in marginal-separation theory (see Stewartson et al. 1982; Ruban
19824, and below) and in the study of the removable Goldstein singularity (Smith
& Daniels 1981 ; Ruban 1990; Kerimbekov et al. 1994).

Our fourth point concerns a very significant application of the classical BL
concept, namely in the fully nonlinear theory of laminar—turbulent transition, where,
in contrast with linear and weakly nonlinear stages, complete alterations of the mean
velocity profile are observed. Several different routes for transition have been
identified, depending on the amplitude and frequency input conditions. Thus, for
almost planar primary instability waves, nonlinear mechanisms typically come into
operation with growing disturbance amplitude as in Smith & Burggraf (1985) (see
also recent theoretical-experimental comparisons by Kachanov et al. (1993)).
Simultaneously, a nonlinear viscous sublayer, governed by the classical BL
formulation, develops closer to the solid surface. Its breakdown implies an additional
eruption of vorticity into the main part of the BL, with subsequent splitting of the
flow structure. Another example appears in nonlinear vortex—wave interaction,
which is a typical product of the nonlinear development of 3-D instability waves. As
shown in Smith & Walton (1989) and Walton & Smith (1992), for sufficiently long-
scale perturbations the vortex motion is governed by the BL equations with known
pressure gradient, the nonlinear interaction with the wave component then being
incorporated in the boundary conditions. The last two papers mentioned then
associate 3-D BL breakdown with the lift-off of lambda vortices that is often
observed experimentally in deepening transition.

Finally here, a deeper understanding of the classical solutions can stimulate
further work in the purely mathematical theory, especially concerning existence
and uniqueness (as discussed in Nickel 1973, Telionis 1981 and Smith 1984), which
can be vital for applications.

The fundamental properties of steady 3-D BL flow stem from the dual nature of
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48 S. N. Timoshin and F.T. Smith

the governing equations — elliptic in the normal direction and hyperbolic in the
directions tangential to the solid surface. This leads for instance to the existence of
zones of influence and dependence in the form of curvilinear wedges with vertical
boundaries (Raetz 1957 ; Wang 1971). Hence fairly standard restrictions on the initial
velocity profile must be satisfied for the initial-boundary-value formulation to be
well-posed (although our current work on instabilities in 3-D flows suggests that the
above mentioned principle provides necessary, but not always sufficient, conditions
for well-posedness). The mixed hyperbolic—elliptic type manifests itself also in the
properties of singular classical solutions.

Some of the singularities have a direct counterpart in 2-D steady flow, being
governed essentially by quasi-2-D dynamics. The most notable example here is the
Goldstein singularity appearing under the influence of an adverse pressure gradient.
Studied initially for 2-D flows (Goldstein 1948), it has also undoubtedly been
identified in the 3-D case, both numerically (Wang 1970; Cebeci et al. 1980, 1981;
Zametaev 1987a) and analytically (Brown 1965; Buckmaster 1972). The similarity
between 2-D and 3-D flows persists to some extent also in the case of the weak
Goldstein or marginal singularity. In the parametrically dependent 2-D flow, for
example around an airfoil at slowly varying incidence, the marginal singularity
naturally arises as an intermediate stage in the crossover from an ultimately regular
solution to one with the Goldstein singularity (Werle & Davis 1972; Ruban 1981;
Stewartson et al. 1982). The viscous-inviscid interaction that is inevitably present
near the singular point provides an additional smoothing of the solution and, when
viewed as a parametric process, describes also bifurcations/non-uniqueness in the
flow with short separated bubbles (see Stewartson et al. 1982; Ruban 1982a, 1990;
Brown & Stewartson 1983; Zametaev 1986). In the 3-D classical solution the
marginal singularity can appear either at some line of the solid surface or at an
isolated point. The first possibility has been studied for a self-similar flow, around a
slender cone at incidence, by Zametaev (1987a). The solution properties turn out to
be quite similar to those of the 2-D flow, including e.g. twofold continuation through
the singular line. The resemblance vanishes, however, in the interaction region
(Zametaev 1987b). The governing equation here acquires strong hyperbolic features,
which make the whole description much more similar to the unsteady version of the
2-D theory in Smith (1982b) and Ruban (1982b). The isolated marginal singularity is
related to the breakdown /separation in the symmetry plane of an elongated ellipsoid
at incidence (Wang 1970; Cebeci et al. 1980). In that case, both the interactive and
the classical solutions exhibit a strong influence of three-dimensionality (see Brown
1985; Duck 1989; Zametaev 1989).

Apart from affecting singularities which are mainly caused by an adverse pressure
gradient (as above), the hyperbolic properties of the 3-D BL flow can themselves be
responsible for the breakdown of the solution. This is evident for example in the
classical problem of steady flow around a rapidly rotating sphere (Howarth 1951),
where non-analytic behaviour is obtained in the form of a collision of two boundary
layers at the equatorial plane. Similar collision occurs on the lee side of a conical body
at incidence. A discontinuity/collision can also originate in a smooth solution as a
result of gradually strengthening merging flow (in-flow) towards the centreplane. An
example of this sort of breakdown is given in calculations of entry flow, in a curved
duct, by Stewartson et al. (1980). Numerical results suggest first of all that the
discontinuity originates through a strong blow-up singularity in the BL flow. The
specific features of the singularity (unbounded BL thickness, zero limiting value of
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Three-dimensional boundary layers 49

the streamwise skin friction, etc.) were also verified, in an accompanying numerical
and analytical study of the symmetry-plane solution ahead of breakdown, by
Stewartson & Simpson (1982). Essentially the same singularity, but in a different
context, is considered in Cebeci et al. (1983). Another suggestion derived from
Stewartson et al. (1980) concerns the structure of the flow field downstream of the
singularity: their numerical results indicate a regular distribution of the flow
functions on approach to the discontinuity, or so it seems, with the limiting values
of the cross velocity being finite but opposite in sign. This also implies a finite
displacement thickness along the discontinuity. Similar conclusions were derived in
the studies based on integral methods (Cousteix & Houdeville 1981) (but see the end
of the present paper for alternative suggestions).

Further information, however, on the circumstances for the appearance of
discontinuous solutions is rather scant. The collision in duct entry flow (above)
develops under a very special pressure distribution; in particular, the streamwise
pressure gradient is zero throughout the flow field. Also, the structure of the blow-up
centreplane singularity is found to be strongly related to the local pressure
distribution near the origin of the discontinuity. On the other hand, an exact solution
for 3-D wall-jet flow illustrates the development of a collision without any influence
of pressure forcing (Timoshin 1991). As a degenerate form of discontinuity, the
collision can occur at an isolated point in flows with high symmetry, as in Brown &
Simpson (1982) and Timoshin (1991).

One of the major objectives of the present article is to establish whether the
occurrence of a discontinuity is a typical result of the general 3-D BL development
and, if so, to provide the corresponding scenario of the BL breakdown. The particular
flow geometry studied here is that of a hypersonic BL on a flat plate, with a small
localized 3-D surface roughness. Apart from its importance for applications, this case
seems to be very attractive for our purposes (see above), because the flow, which is
governed by Ackeret pressure forces, allows both the local and the global external
conditions to be changed easily without any loss of physical reality in the model.
Thus, along with alterations in the local environment near any singularity, the
influence of the flow history is also taken into account.

The plan of the paper is as follows. In § 15 the flow geometry is specified and the
initial-value/boundary-value problem governing the BL flow over the surface
roughness is formulated. The flow is assumed to be symmetric with respect to the
centreplane parallel to the freestream velocity. The analysis of the flow field starts
in §2 with a numerical and analytical study of the typical symmetry-plane solutions.
We consider first, in §2a, the limiting case of obstacles very narrow in the spanwise
direction. The streamwise pressure gradient is zero in this limit, leading to a
formulation similar to that of duct entry flow in Stewartson et al. (1980) but with
much more freedom in the crosswise pressure distribution. As a result, in addition to
the solution studied by Stewartson & Simpson (1982) and Cebeci et al. (1983), two
more break-up singularities are identified. The position and specific form of the
singularity are shown to be strongly dependent on the local pressure gradient, as well
as on the flow development ahead of the breakdown. When the roughness width
becomes finite, however, leading to a non-zero streamwise pressure gradient, the
solution properties become quite different, as described in §2. First, only one of the
above-mentioned break-up singularities is structurally stable to the streamwise
pressure forcing now present. This singularity is purely inviscid and develops in the
maddle of the flow. It is remarkable, in fact, that the singularity can occur even in a
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flow driven throughout by a fawvourable pressure gradient—a feature somewhat
similar to the breakdown of 2-D and 3-D unsteady flows (Van Dommelen & Shen
1982; Elliott et al. 1983; Cowley et al. 1990; Van Dommelen & Cowley 1990 ; Peridier
et al. 1991a, b). Second, because the flow typically contains regions with adverse
pressure gradient, a breakdown of the Goldstein/marginal kind is generally expected,
and indeed found, as an alternative. The main result of the symmetry-plane study,
we believe, is the identification of the inviscid internal singularity and the Goldstein
case as the two basic routes of 3-D boundary-layer breakdown.

In §3 we proceed to an asymptotic description of the singular solutions in the
3-D neighbourhood of the symmetry plane, when the breakdown in that plane is of the
inviscid internal kind. The main goal there is to establish whether the break-up in the
symmetry plane corresponds to the origin of a discontinuity downstream. We show,
however, that the same symmetry-plane breakdown can occur in two completely
different solutions of the full 3-D BL system. One of them terminates at a singular
line, with an internal breakdown similar to that of 2-D steady flow on a downstream-
moving surface (Sychev 1980; Elliott et al. 1983). The shape of this singular line is
mostly regular but develops a cusp at the symmetry plane. The other local solution
of the full 3-D equations is regular beside the symmetry plane and indeed describes
effective collision of boundary layers. The form of collision is, we should stress,
noticeably different from that proposed in Stewartson et al. (1980) and in particular
the displacement thickness is unbounded on both sides of the discontinuity.

A numerical study of the full 3-D BL flow in one particular geometry (§4) is a
culmination point of our analysis, because an appeal to the full formulation seems to
be inevitable, first of all as a confirmation of the scenario (suggested in §3) of
discontinuity development from an initially smooth solution. It also provides an
independent check on the symmetry-plane study of §2. Further discussion, on the
properties of the 3-D singular solutions and a number of suggestions stemming from
our investigation, is given in §5.

(b) Statement of the problem

We consider 3-D hypersonic boundary-layer flow along a flat plate with a small
localized 3-D surface roughness at a distance L* from the leading edge. In the
cartesian coordinates x*,y*,2*, with «* measured from the leading edge along the
free stream and y* normal to the plate, the shape of the roughness is described by the
relation

yw = L*Hf(x,z), (1.1)
where local variables of order one in the region of the roughness are introduced as
x=AYo*/L*¥—=1), z=A4""2*/L*, (1.2)

and 4 < 1 is the typical non-dimensional length scale of the roughness in both the
streamwise and spanwise directions.

The thickening of the high-temperature boundary layer at large values of the free-
stream Mach number M, results in more intense interaction between the viscous and
inviscid portions of the flow, which in turn leads to enhanced propagation of
disturbances upstream of the surface irregularities (Lipatov 1980 ; Makhankov 1991).
For a viscosity proportional to the absolute temperature and some standard
conditions of heat transfer at the surface (e.g. prescribed temperature distribution),
the length scale of the interaction region is estimated as

)
w¥—L* = O(L*Re {1, (1.3)
Phil. Trans. R. Soc. Lond. A (1995)
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Three-dimensional boundary layers 51

where the Reynolds number is based on the free-stream parameters, Re = pX u* L*/
w¥. In particular, at sufficiently large Mach numbers M, = O(Re%) the interaction
region will cover the entire flowfield between the leading edge and the roughness.

However, we are interested in the properties of the flow with a moderately large
value of the Mach number and a sufficiently elongated shape of roughness, in which
case effects of viscous—inviscid interaction and upstream propagation of disturbances
may be neglected, to the leading approximation. This introduces the following
restrictions on the orders of magnitude of the governing parameters:

1 <M, < Ret, ResMi <A4<1. (1.4)

As usual for a locally perturbed boundary layer flow, the influence of viscosity is
essential in a narrow wall layer only. Therefore the local flow field acquires a multi-
layered structure including, along with the viscous sublayer, the passive major
portion of the original flat-plate boundary layer and the outer region of potential
flow. Under the restrictions (1.4) the latter region serves to provide the pressure
distribution driving the flow in the viscous sublayer. If, in addition, the vertical scale
of the surface roughness is sufficient to generate nonlinear perturbations in the wall
region, the solution of the Navier—Stokes equations in the viscous sublayer has the
following expansions:

w* = uX BNk pu(a,y,2)+ ...,

v¥ —u* Q¥ [0a* —w* Qy [0z* = w¥ M2 Re A3 N3, i, pio(x, y,2) + ...,

w* = u¥ AN, s, pFw(,y,2)+ ..., (1.5)
p* = pEuw [y M2 A MR AN, i, o p(@,2) + ..,

*

p*=pEMEpyt ..., p*=piMp,+....

Here u*, v*, w*, p* denote the components of the velocity vector in the x*, y*, 2*
directions and the pressure respectively, the superscript * refers to dimensional
variables, and the free-stream values are marked with a subscript co. The main
scaled parameters of the unperturbed boundary layer at the position of the roughness
x* = L* namely the skin friction and the density and viscosity at the wall, are
denoted by Ay, py, i, respectively. The vertical coordinate of order one in the wall
region is defined by the relation

y*—yk = L*M2 Re™* A3 i, poi y. (1.6)

Substitution of the expansions (1.5), (1.6) into the Navier—Stokes equations leads
to the system of 3-D BL equations of an effectively incompressible fluid,

ow Ou Ouw Op Q%
——— — o —_—= — 1.
uax+vay+waz+ax ek (1.7a)

ow  w ow 6_32 _ Pw

—4vr—tw— = 1.
“ax+”ay+waz+az el (1.7b)
du v ow
a‘ﬁﬂ"@ 5—0. (170)

The pressure forces in (1.7) are fixed by the Ackeret formula stemming from the
analysis of the hypersonic flow outside the boundary layer, so that

p = hd/0)[f(x,2), (1.7d)
Phil. Trans. R. Soc. Lond. A (1995)
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where the O(1) parameter
h=H](45M} N, 1, ps,) (1.8)
represents the scaled height of the roughness.
Boundary and initial conditions are those of no-slip at the solid surface and
matching with the flow upstream and above the nonlinear viscous region. Thus

at y=0, u=v=w=0; (1.9a)
at =0, u=y, w=0; (1.90)
as y—>+o, u—y—>Ax,z), w—0. (1.90)
In (1.9b) it is assumed that the surface perturbations are absent for x < 0. The

unknown function —A4(x,z) in (1.9¢) is the normalized displacement thlckne%s of the
boundary layer.
Our concern, then, is with the solution properties of (1.7a—d) with (1.9a—c). As an
example of the surface irregularity we consider a half-infinite dent defined by
S, 2) = (1—=22/mb*)™ (1 —(1—3x)")4, 2| <byvm and 0<x<2; (1.10q)
flx,2) = (1=22/mb>)™, |2 <by/m and z>=2; (1.100)
and f = 0 elsewhere. The value of the parameter m > 0 is assumed to be large enough
to provide smooth entry flow at the margins z = 4 b+/m. Also the constant b6 > 0 and
the value by/m represents the half-width of the dent.
The case of a localized dent given by
Slx,z) = 4(1—22/mb®)™ e —x?)?, |z <by/m and 0<x<2, (1.11)

was also considered in this research (with the same meaning of the parameters m,
b), but just a few examples of the (symmetry-plane) solutions will be given below for
(1.11). Our main example is that in (1.10a,b).

2. Solutions in the plane of symmetry

Both the numerical and the analytical treatment of the problem (1.7), (1.9)
simplifies considerably in the symmetry plane of the boundary layer where the
solution is independent of the rest of the flow. Assuming the shape of the roughness
to be sufficiently smooth in z, we expand the solutions for (1.7), (1.9) in the usual
manner, for small z:
w,0,w,p, f, A} = {ug(2, )+ 0(2%),  volw, y)+O0(2*), Zwo(% y)+0@),

Po(@)+2°py (@) + 0, fo(a) +2%1(x) + 0, Ay(x)+ 0}, (2.1)

yielding the boundary-value formulation for the leadlng terms in the following form:

Qg Quy | dpy _ CPuy

"o 30 +v, dy +d—x W (2.2a)

uoaaw"+ Oa£”°+w0+2p1 ag;”;’, (2.20)
Ouy/0x + 0v, /Oy +w, = 0, (2.2¢)

Py = hdf,/dx, p, = hdf,/dx, (2.24d)

y=0: uy=vy=wy=0; x=0: u,=y, w,=0, (2.2¢,f)
y—>+0o0; u,—y—>A,(x), w,—>0. (2.29)

Phil. Trans. R. Soc. Lond. A (1995)
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The problem above, although essentially 2-D, nevertheless reflects some important
features of the original 3-D formulation, as mentioned in the Introduction. In
particular, we have two components of the driving force — the pressure gradients
streamwise and normal to the symmetry plane in (2.2a,b) respectively — that are
almost independent in the case of locally perturbed hypersonic flow, according to
(2.2d). Additional forcing of the streamwise flow, through the mass-conservation
equation (2.2¢), can be interpreted as an effect of contraction/expansion of the fluid
particles surrounding the plane of symmetry.

A numerical solution for the problem (2.2a—g) could be obtained from a
straightforward marching procedure based on, for example, a Crank—Nicolson
approximation. Our test calculations, however, suggested that finite-distance
singularities with unbounded thickening of the boundary layer were obtained, for
various pressure distributions, resulting in substantial loss of accuracy close to the
singular point. As might be expected, enlarging of the computational domain
eventually led to excessive time- and memory-consuming calculations, the situation
being very similar to those of the 2-D steady boundary layer on a moving wall
(Telionis & Werle 1973 ; Williams & Johnson 1974 ; Zubarev 1983 ; Elliott et al. 1983)
and the finite-time singularities in unsteady 2-D flows (for discussion and further
references see Sychev et al. (1987), Van Dommelen & Cowley (1990) and Peridier
et al. (1991a,b)).

Anticipating a mainly inviscid character for the singularities involving unbounded
boundary-layer thickness, and taking also into account the analytical developments
of Smith & Walton (1989) and Walton & Smith (1992), where the streamwise velocity
component naturally arose as an independent variable in the local singular solutions,
we obtained numerical and analytical results for the problem (2.2a-¢) in Crocco
variables. These are defined as

g=x? 77=u0(x?y)? (23)

making use of the assumption of a monotonic streamwise velocity profile at any
x-section, which is obviously satisfied at small  in view of the initial condition (2.2f);
see also below for the comparison of the symmetry-plane results with those obtained
in the global calculations of the 3-D flow in cartesian variables.

In Crocco variables (2.3) the problem (2.2a—¢) reduces to the solution of two
equations for the vorticity Q = 0u,/0y and cross-velocity w, in the following form:

00 dp,0Q 00
0 dp, Ow, 0%w,
n—a“éuwg———dpg“ St =2, (2.40)

with the functions p,(§), p,(§) defined in (2.2d). The initial/boundary conditions
following from (2.2e—¢g) and (2.2a) are:

at =0, w,=0, Q0Q/0y =dp,/dE; (2.5a)
at £=0, Q=1, w,=0; (2.50)
as y—>+o00, -1, w,—0. (2.5¢)
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54 S. N. Timoshin and F. T. Smith

After the solution for (2.4) and (2.5) has been obtained, the normal velocity v, and
vertical coordinate y(£, %) may be calculated from the relations

oy 0Q _ _.dp, oy 1
Q72 =5 2.6a,b
Ty T A W (2.64,6)
with the no-slip condition y(£,7 = 0) = 0 used along with (2.6b). The relation
— Ay (&) = lim (y(& 1) —7) (2.7)
70

enables the displacement thickness also to be evaluated afterwards.
The components of the pressure forces corresponding to the particular shapes of
surface roughnesses (1.10a,b), (1.11) are evaluated as

Py = = 12ht— 1?1 — (u— 1) [L 5o — 1)*], (2.84)
Py = 8(h/b%) (x—1)’[1— (e —1)*F, (2.80)
Po=p; =0, =22 or xz<0, (2.8¢)
for the half-infinite dent (1.10), and similarly
Py = 24h(52* —10x+4) (20 —2?), (2.9a)
P, = — (h/b?) 24(1 — ) (22 — 2%)?, (2.95)
Po=p, =0, =2 or x<0, (2.9¢)

for the localized dent (1.11). In both cases the width factor (b) of the obstacle appears
only through the combination %/b* in the crosswise component of the pressure force,
which naturally leads to the classification of the possible flow patterns in terms
of two independent parameters, A and A, = h/b% In particular, the limiting case
h,—0, h=0(1) corresponds to quasi-2-D flows with well-established properties.
More interesting for the purposes of the present paper, however, is the limit 2—0,
hy, = O(1), corresponding to obstacles elongated in the streamwise direction. Similar
régimes, but for different flow configurations, were studied earlier by Stewartson &
Simpson (1982) and Cebeci, Stewartson & Brown (1983), hereinafter denoted by SS
and CSB respectively.

(@) Symmetry-plane solutions for elongated obstacles

Some details of the numerical method applied in the solution of (2.4)—(2.7) are
given in Appendix A.

We consider first the half-infinite obstacle giving the pressure gradient (2.8a—c) in
the symmetry plane. In the limit A0, A,, = O(1), the only driving force appears as
P, in the crosswise momentum equation. We notice further that p, is non-zero only
in the interval 0 < x < 2, with fluid being driven towards the symmetry plane if
P, is positive (i.e. in the case of dent flow, A, < 0) and outwards if p, is negative
(hump flow with A, > 0). Distributions of the streamwise skin friction 7,, = 0u,/0y
(x,y = 0), the displacement thickness §, = —A4,(x) and the crosswise skin friction
T, = 0w, /0y (x,y = 0), for » = 0 and different values of 4, = 0.45, —1.5, —0.9, —0.6,
—0.5, —0.45, are shown in figures 1-3 respectively.

Curves 1 in figures 1-3, corresponding to the boundaty layer on a hump A, = 0.45,
Ieptesent an attached and smooth solution in the region considered. The pronounced
maximum in 7, suggests that strong 3-D vortical flow is generated in the adjustment
region of the hum_p, ie. 0 <z < 2, but subsequent inertial development of the flow
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Figure 1
1.5 -
1 _
Figure 2
1 20
‘CX
8,
2\ 3% 4\ 5\¢

0

0 X 3 2

sk ’

Figures 1-3. Calculated flow functions (in Crocco variables) plotted against z in the symmetry
plane for the elongated half-infinite obstacle (1.10) with = 0 and various finite A, = h/b*: figure
1, streamwise skin friction 7, ; figure 2, displacement thickness d; figure 3, z-derivative of cross-flow
skin friction 7,. Curves 1-6 correspond to A, = 0.45, —1.5, —0.9, —0.6, —0.5, —0.45, respectively.
Grids used have various steps Ag, Ay, defined in Appendix A and various numbers of -points N,.
Jurve 1, [A£, Ay, N,] = [0.01, 0.04, 300]; (2), [0.001, 0.02, 600]; (3), [0.001, 0.04, 600]; 4-6, [0.001,
0.04, 300]. Influence of the grid in case 3: X, [0.001, 0.02, 600], @, [0.001, 0.04, 300]. Dashed line
in figure 2 represents the function 100,72 for case 6; finite slope at the singular points is in
agreement with (2.24).

field occurs in the region of zero pressure gradient x > 2, as can be seen from the
behaviour of the streamwise skin friction and the displacement thickness.
Alteration of the sign of A, causes dramatic changes in the flow properties. For the
moderately deep dents (graphs 2 and 3 in figures 1-3), apparent breakdown of the
solution is obtained at some point = x, as a result of progressively enhancing in-
flow towards the centreplane. The most marked features of the suggested singular
behaviour of the flow functions (the trends towards unbounded growth of the
boundary-layer thickness d,, zero streamwise skin friction 7, and infinitely large
negative values of the crosswise skin friction 7,) identify a singularity of the SS, CSB
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kind, we believe. It was shown in the numerical and analytical treatment of SS, CSB,
and also confirmed in our calculations, that the singularity develops in the near-wall
region; this thickens infinitely in cartesian variables, owing to the mutually related
deceleration and compression along the z-axis of the near-wall fluid particles. The
majority of the boundary layer, therefore suffering just a vertical shift, has fairly
passive dynamics.

From the above-mentioned papers, p, must be positive at the point of an SS-CSB
singularity. We notice, however, from figures 1-3 that diminishing the depth of the
dent leads to a downstream shift of the singular point (curves 2—4) until, eventually,
the singularity is pushed into the region of constant pressure x > 2, where p; = 0
(curves 5 and 6). Then, although the qualitative behaviour of the displacement
thickness and the skin friction 7, remains unaltered (but notice the more regular
approach of 7, to zero now, from comparing curves 2 and 6 in figure 1), a novel
structure of the singularities located at any x =z, > 2 can be identified, or is
suggested at least from the apparent finite limiting values of the crosswise skin
friction 7, in figure 3. Further illustration of the suggested new singular solution is
given in figures 4-6, corresponding to b = 0, &, = —0.45, in the form of the velocity
and vorticity profiles near x = x, = 2.84. The appearance of the minimum of
vorticity at the wall in figure 4 (this minimum tends to zero as x —x,) indicates, as
in S8, CSB, that the wall region which is narrow in Crocco variables is mainly
responsible for the breakdown of the solution. This issue is also supported by the
cross-velocity distributions in figure 5, the extremum of w, being shifted towards the
wall closer to the singularity. Lastly, the enlarging (in ) linear portion of the
streamwise velocity profile is evident in the wall region of figure 6.

We therefore next consider analytical properties of the near-wall singularity with
zero pressure gradient, starting from the boundary-layer formulation (2.4)-(2.7).
Based on the numerical results above, we expect the solution for w,, 2 to be regular
near £(= x) = &, in the main portion of the flow, so that

Q=Qn)+E— 20+, (2.10a)
wo = Woo(N) + (Es— &) wor () + ..., (2.100)

where
Q) = —(Qywoo+Q520) /7, wy, = (Wi — L5 w5,) /7 (2.11)

from (2.4a,b) respectively. In general, the leading terms of (2.10a, b) can be singular
as 9 —0, say of the form

Qo=an*+..., wy=—by"+..., (2.12)
with constants a,b,a,y > 0, which is again consistent with the numerical results in
figures 4 and 5. Then even stronger singulalities will be obtained as #— 0 in £2,, w,,,
leading to the invalidity of the expansions (2.10a,b) in some narrow layer 3 =
O((&,—&)#), with f#> 0. Bearing in mind the sharply growing thickness of the
boundary layer, we may suggest a nonlinear inviscid mechanism to remove the
singularities in (2.10), (2.12) at y = 0+, leading therefore to an estimate # = 1/(1+7)
and the additional restriction 2a+7y > 2 on the (unknown) o, y values. In the
nonlinear inviscid layer the solution is expanded as

= (&= Qy(u+ ...
= (=7 wy(p)+ .., (2.13)

w=n(E—E)7V0Y = 0(1),
Phil. Trans. R. Soc. Lond. A (1995)
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Figure 4 Figure 5
6
Up
2.75
— <
4 0
Wo
Figure 6
30
2.75
y

2.5
x=2

0 Uy 6

Figures 4-6. Development of the near-wall blow-up singularity under zero pressure gradient in
centreplane solution corresponding to case 6 in figures 1-3, at three successive x-sections: figure 4,
vorticity profiles 2(u,) in Crocco variables suggest minimum tending to zero at the wall; figure 5,
pronounced minimum in z-derivative of the cross-velocity w,(u,); figure 6, streamwise velocity
profiles u,(y) reflect the growing BL thickness in cartesian variables.

with expressions for the leading terms satisfying matching conditions with (2.10),
(2.12) of the form

Q, = ap* " b+ p), wy,=—bub+uth) L (2.14)

To complete the analysis and satisfy the no-slip conditions at the solid surface we
consider next the viscous region defined by

y = W(gs_g)—zus—za) _ 0(1), d= a—y < %, (2.15)

the latter restriction being necessary for the viscous region to be thin compared with
the inviscid nonlinear zone. From (2.13)-(2.15), the leading approximation in the
viscous region is

Q= (=) +..., wy= (§—EP P (n)+...,  (2.16)
Phil. Trans. R. Soc. Lond. A (1995)
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where the functions Q,,, w,, must be determined as a solution of the nonlinear
boundary-value problem

Q3,925, = v/(5—20) [3v8230— (24 0) L230] — w3 £24, (217a)
Q2w = v/(5—20) [Brwy, —2(0 — 1) wyy] + w3y, (2.17b)
Wyo(0) = £24,(0) = 0, (2.17¢)
v>+00: Qp=ab’ ..., w=—v+... (2.17d)

An appropriate solution of (2.17a-d) is
Qo =ab, wyy=—v, 06=1, (2.18)
yielding, therefore, one relation between « and y
a—y=1. (2.19)

We notice also that, in view of (2.15), (2.16), the relations (2.18) predict a finite
value for the crosswise skin friction 7, and a linear behaviour of the streamwise skin
friction 7,, which is in excellent agreement with our numerical results near the
singular point.

Both a, y are still arbitrary, related by means of (2.19) only. Considering the next
terms in the expansion (2.16) we obtain

Q= (§—&)ab+(E—§)" 2y () + ..., (2.20a)
wy =—v+(E—E) Twy, (V) +.... (2.200)

taking (2.18), (2.19) into account. The boundary-value formulation for the new
terms is

a*bPwy; — 2wy, + (a4 1) vw,, = 0, (2.21a)
a?b?Qy, — v, + (a— 1) vQ,, = —abw,,, (2.21Db)
wy,(0) = 25,(0) =0, (2.21¢)
v>400: wy =b"WwM4., Q) =arr+.... (2.214d)

As before, the conditions at infinity stem from the matching requirement with (2.13),
(2.14). Substituting ¢t = v®/(3a%b?), equations (2.21a, b) can be reduced to uniform and
non-uniform confluent hypergeometric equations respectively. Appropriate solutions
of (2.21a—d) then exist only if

a=3n n=1,2,..., (2.22)

in which case w,, ¢ 3 and Q,, are just polynomial functions of t. If n = 1, for example,
then
a=3, wy =0b1—4a’%), Q, = a(v®—a?b?). (2.23)

Thus an infinite number of singular solutions for the symmetry-plane equations
(2.4a,b) can be obtained in a region of zero pressure gradient. However, the first of
them, corresponding to n =1, a = 3, v = 2, is likely to occur in the general case.

With a, v given by (2.19), (2.22), the displacement thickness near the singular
point is evaluated from (2.6b), (2.7) and (2.13) as

1 oo d
0 = —A,(§) = a(gs_g)(l/sn)—lj ;,'78:5-}- )

0

n=1,2,.... (2.24)

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 7 Figure 8

T, 8,
S
4
112 3
) ]
0 x 3 0 x 3
Figure 9
L5
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|
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Figures 7-9. Calculated centreplane solutions (in Crocco variables) for the elongated localized dent
(1.11) with A =0, k, = h/b? = O(1): figure 7, streamwise skin friction 7,: figure 8, displacement
thickness d,; figure 9, z-derivative of cross-skin friction, plotted against x. Curves 1-5 are
drawn for A, = —0.5, —0.3, —0.18, —0.16, —0.147, respectively. Grids used have, for curve 1,
[AE, Ay, N,] = [0.002, 0.02, 600], and 2-5 [0.002, 0.04, 300]. Dashed line in figure 8 corresponds to
2008,2, case 5, with finite slope at the position of breakdown in agreement with (2.36).

It is remarkable that the major contribution to the displacement thickness is
produced in the nonlinear inviscid region g = O(1), whereas the viscosity is only
responsible for the choice of eigenvalues in the local analysis. Further comparison of
the asymptotic and numerical results is given in figure 2, where the dashed line
reveals the linear behaviour of the function &;% on approach to the singular point.
This is in good agreement with the value n = 1, 8, = O((£,— &)%) in (2.24), which also
confirms our choice of n = 1 as the most general case.

Both SS-CSB and the singular solutions just described, although obtained in
physically realistic configurations, nevertheless require very special local pressure
distributions near the singular point. It turns out that another singularity, of a
similar nature but structurally stable to the local pressure variation, develops in
more general cases. It was first encountered in our symmetry-plane calculations for
elongated localized obstacles, i.e. for the pressure gradient (2.9a—c¢) with 2—0 and
hy, = h/b%* = O(1). Corresponding results are shown in figures 7-9 for dent flows with
h=0,h,=—0.5,—0.3, —0.18, —0.16, —0.147. Entry flow in a relatively deep dent
(curves 1 and 2 in figures 7-9) yields the SS—-CSB singularity until the singular point
x = x, becomes located in the region of positive p;, where 0 <, < 1. For more
shallow dents, A, > —0.2, the singularity is shifted downstream to the interval 1 <

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

A

/

A

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS

SOCIETY

OF

L2

TaNsactions | HE ROVAL

SOCIETY

OF

Downloaded from rsta.royalsocietypublishing.org

60 S. N. Timoshin and F.T. Smith
Figure 10 Figure 11

Uy

2.75

Figure 12

301
275

x=2

0 6
1y

Figures 10-12. Vorticity and velocity distributions in the numerical solution corresponding to
régime 5 in figures 7-9, at three x-sections ahead of the singularity. Breakdown in the middle of
the flow terminates the solution in the region of zero pressure forcing « > 2, as can be seen from
the development of an internal minimum in the vorticity profile £(u,) (figure 10), the sharp peak
in the derivative of the cross-velocity wy(u,) (figure 11), and the plateau region in the streamwise
velocity profile u,(y) (figure 12).

xs < 2 with p; < 0. The apparently new character of the breakdown can be seen from
the finite (and non-zero) limiting values of both components of the skin friction
(figures 7 and 9) but still infinite displacement thickness (figure 8). It is remarkable
also that qualitatively the same singularity persists for even shallower dents, where
the singularity appears in the region of zero pressure gradient x, > 2 (curves 5).
Thus, comparing figures 1-3 and figures 7-9 we conclude that both the local
pressure distribution and the history of the boundary-layer development (i.e. global
conditions) are responsible for the particular type of breakdown of the solution.
The behaviour of the vorticity and velocity components on approach to the
singular point is shown in figures 10-12, corresponding to curves 5 in figures 7-9,
h =0, h, =—0.147. The location of the minimum (tending to zero) in the vorticity
distribution (figure 10), as well as the development of the plateau region in the
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streamwise velocity profile (figure 12), undoubtedly indicates that internal processes
in the middle of the boundary layer are dominant in this case. The analytical structure
of the singularity in the middle of the flow is obtained from the symmetry-plane
formulation (2.4)—(2.7) as follows. Consider for simplicity the case of zero local
pressure gradient dp,/dx = p, = 0, with further generalizations to be given in §3.
Assume, as before, that the regular expansions (2.10a, b) hold true on approach to the
singular point §(= x) = & in the major portion of the boundary layer, but this time
the limiting functions (), wy.(n) are expected to be singular at some internal point
7 =15 > 0, so that

Qo =a*|np—n*+..., we=—bFnp—nl7+.... (2.25)

Here »—7,—>=+0 and the constants «, y, a*, b* are positive, in accordance with
numerical results in figures 10 and 11. The singularities in (2.25) are removed in the
collapsing layer where

= (=) (&— € =0(1), as §—£->0, (2.26)
and, from matching with (2.25), the expansion for the flow function is
Q= (E—ETQyu)+..., wy=(E—E Twy(p)+ ... (2.27)

The additional assumption of a nonlinear and mainly inviscid nature of breakdown
leads to the restriction 2047y > 2 on the eigenvalues «, ¥ and expressions for the
coefficients in (2.27) of the form

Q, = (@ /) |l (OF s pl?), wy = —bFs(bF + 5| )", (2.28)

valid for g > 0 and x4 < 0 respectively.
The solution (2.27), (2.28) is still singular at g = 0; hence we consider a viscous
sublayer and define

v=(n—n) (E,—EFD =0(1), as E—£>0, with d=a—y<1. (2.29)

The leading terms of the solution in this viscous region are

= (g, — NN Q. (v)+ ..., = (§,— &) twgy(v) + ... (2.30)
The functions 2,,, w,, then satisfy the boundary-value formulation
Q2090 = [9s/2(1—98)][Bv25,— (24 8) 240] — w30 25, (2.31a)
Q2 wiy = nd[3v/2(1 — 8)] who + wse} + Wiy, (2.31b)
such that, as v -+ o0,
Q.o = (@FbE /) WP+ ..., wye=—ns+..., (2.31¢)

where matching conditions with (2.27), (2.28) are taken into account. The appropriate
solution of (2.31a—c) is therefore

‘930 = a+b+/77s = a’_b_/"?s’ W3o = — Ns» d=0, (2.32)

giving in particular the relation & =y in view of (2.29).
The eigenvalues a,y are finally determined from considering further terms in the
expansions (2.30), namely

= (£,—E) a*b* [+ .+ E—EF Q)+ .., (2.33a)
—E—E) et E—EF P w, (0) + (2.33b)
Phil. Trans. R. Soc. Lond. A (1995)
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62 S. N. Timoshin and F.T. Smith
yielding the boundary-value formulation for €2, w,, in the form
(@67 /15)* Q51 = 3ns(v&25, — ag1) — (@b /1) wyy + 75 2. (2.34a)
(@b /95)*why = Fs(3vws; — (Boe—4) wyy) — 29wy, (2.34b)
with, as v—>=+00, wy = @2/bF)F+..., 2 =atP+.... (2.34¢)

Regular solutions of (2.34a—c) are necessarily polynomial functions of v, a result that
can be established by, for example, taking appropriate derivatives of (2.34a,b) and
then applying Fourier transformation in v. This gives, for positive a*, b* (see also
(2.25)), an infinite number of eigenvalues

a=y=2n n=1,2.. (2.35)

and also the two relations a* = a~, b" = b".
The infinite spectrum of possible internal singular solutions of the symmetry-plane
equations can be further characterized by the local displacement-thickness growth as

Y Y -
8y = (E,—£)02m lﬁj_ww—i_m, for n=1,2,..., (2.36)
from (2.7), (2.26)—(2.28). In a numerical solution the case n = 1 is observed typically,
as can be seen from the finite slope of the function d,(x)~2 at the singular point (the
dashed line in figure 8).

(b) Symmetry-plane solutions for finite-width obstacles

To study the influence of non-zero streamwise pressure gradient on the breakdown
of symmetry-plane flow we consider below examples of the numerical solution of
(2.4)—(2.7) for the half-infinite surface roughness, where the pressure gradient is given
in (2.8a—c). The case of relatively narrow roughness b = 0.2 was chosen to (roughly)
estimate the physical relevance of the above limit of an infinitely narrow
configuration h = 0, h, = h/b? = O(1). ‘

Graphs of the streamwise skin friction 7, and displacement thickness d, are shown
in figures 13 and 14 respectively, for the range of the depth/height parameter
h=-—1,—-04, —0.1, —0.03, —0.02, 0.2, 0.335, 0.36. Considering first the dent flow
(h < 0), we notice that the streamwise pressure gradient (2.8a) is favourable in the
entry portion of the dent 0 < x < z, = 2(1—571) = 0.6625 but adverse in the region
%y < z < 1. Influenced by additional accelerating/decelerating pressure forcing, the
SS—CSB singularity of the highly elongated limit (figures 1-3) is now replaced by one
of the two more stable structures, either that described in (2.25)-(2.36) or the
Goldstein structure. Thus, if the breakdown occurs in the region 0 < z, < x,, the
singularity develops in the middle of the flow (curves 1 and 2 in figures 13 and 14),
as can be seen from the unbounded growth of the boundary-layer thickness but with
regular behaviour of the streamwise skin friction. In contrast, the Goldstein
singularity, typical of boundary layers with adverse pressure gradient, is observed in
the interval z, <z, < 2 (see curves 3 and 4). For a sufficiently shallow dent the
singular point is shifted downstream of the adjustment region z, > 2 (curves 5).
Active pressure forcing is absent here, leading thereby to the development of a near-
wall singularity the same as for the limit 20 in figures 1-3.

As regards the hump flows (A > 0), the properties of the solution turn out to be
qualitatively close to those of 2-D and previously studied 3-D flows. With increasing
height of the hump (curves 6-8) the solution transforms from fully attached to
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Three-dimensional boundary layers 63
Figure 13
Figure 14
10
8,
1 0 ]
2.6 2.6
24

Figures 13 and 14. Calculated centreplane flow functions for the half-infinite roughness (1.10) of
finite width b = 0.2, m = 4: figure 13, streamwise skin friction 7,; figure 14, displacement thickness
8, plotted against x. Curves 1-8 are drawn for values of the height/depth parameter # = —1, —0.4,
—-0.1, —0.03, —0.02, 0.2, 0.335, 0.36, respectively. Grids used in Crocco variables have, for case
1, [Ag, Ay, N,] = [0.0001, 0.02, 600]; 2, [0.0002, 0.02, 600]; 3, [0.0005, 0.02, 600]; 4, [0.01, 0.04,
300]; 5, [0.001, 0.04, 300]; 6 and e, [0.001, 0.02, 600]; 7, 8, [0.001, 0.02, 300]. The calculations
suggest two possible singularities in the region of non-zero streamwise pressure gradient 0 < z <
2: the Goldstein/marginal as in cases 3, 4, 7, 8, or internal inviscid as in 1, 2. The dashed line in
figure 14 drawn for 508,72, case 5, confirms the same as in figures 1-6, namely near-wall blow-up
singularity without active pressure forcing.

marginally singular and, finally, to the solution with a Goldstein singularity (see
Werle & Davis 1972; Ruban 1981, 1982a; Stewartson et al. 1982 ; Cebeci et al. 1980;
Brown 1985; Zametaev 1987 a, 1989).

The breakdown described above for a steady attached boundary layer in a region
of favourable pressure gradient is a remarkable event and deserves further
investigation. In §§3 and 4 below we present the results of analytical and numerical
treatments of the complete 3-D boundary layer, for cases containing the inviscid
internal singularity in the corresponding symmetry-plane solution above. It will be
shown that the hyperbolic properties of the 3-D boundary layer are mainly
responsible for this kind of breakdown, with the intersection of characteristics and
the formation of shock-like discontinuities (or alternatively envelopes) being the
major global issue.

3. Inviscid singularities in the vicinity of the symmetry plane

Although the appearance of singularities in the symmetry-plane solution strongly
indicates breakdown of the initially attached boundary layer, further analysis is
necessary to clarify the nature of the singularity in the global 3-D flow. We derive
below the analytical 3-D extension of the solution with an inviscid internal
singularity in (2.25)-(2.36) for the immediate neighbourhood of the plane of
symmetry. To demonstrate the applicability of our results to other incompressible
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64 S. N. Timoshin and F.T. Smith

flows we consider the general case of a 3-D boundary layer on an arbitrary smooth
surface governed by the equations (see, for example, Crabtree et al. 1963)

ﬁ@_u_i_ au+w©u+ ww Oy w? %_ﬁ_l@p *u (3.1a)
hy0x Oy hy0z h hy, 0z h hy0x h0x Oy’ '

wdw OQw wow ww oh, u® Ohy 10p 0w
e T oy T T tr ke Thee s O (3:10)

l%+9€+ia_w u %_}_ w_Ohy
h,0x Oy hy0z h hy0x hih, Oz

=0. (3.1¢)

Here the Lamé coefficients A, (x, z), hy(x,2) and the prescribed pressure p(z, z) are all
regular functions of x,z, and also some standard initial and boundary conditions are
assumed for the unknown velocity components u, v, w, along the z, y, z axes
respectively.

As before, the analysis can be somewhat simplified if, instead of the normal
coordinate y, a new variable is introduced which remains of order one in a thickening
boundary layer. For easier interpreting of the final results we choose the stream
function ¢ = Yr(x,y,2) as the new variable. The monotonicity of ¥ as a function of
y at any fixed x, z is, of course, very unlikely in a general 3-D boundary layer.
However, in the local solution below we verify this condition, which is obviously
satisfied in the symmetry plane upstream of the singular point. In the new variables
%, Y,z we obtain from (3.1a—c) the three equations

ﬂ%+ﬂa_u+ uw Ohy _ w? %_I_i@_p_li(l Ou (3.2a)
hyOx  hyOz  hyhy Oz hihyOx  h Ox vy \roy)’ ’
wow wow ww Oh, w? Ok, 10p 10 (10w
e T hoe ko hhoe Thoe ?Tﬁ(?é{&)’ (8:26)
(0/0x) (ruhy) + (0/0z) (rwh,) = 0, (3.2¢)

governing the velocity components u, w tangential to the solid surface and the
function r(x,,z), which is defined by

(@, ¥, 2) = Oy, ¥, 2) /O (3.2d)

and, once known, serves for evaluating the vertical coordinate y(x,r,2). The
additional relation for the vertical velocity

_udy wdy

v ¥,2) h ox h oz’ (3.2¢)

stems from the definition of the streamfunction.
With z=0 being the symmetry plane, we expand the solution for (3.2a—c)
upstream of the singular point in power series in z of the form:

w = ug(x, ) +22uy (2, )+ ..., w=zwy(x, ¥) + 22w, (@, ) + (3.3a,b)
r=ro(@, ) +20r (@, )+, p = py(w) +20p (w) + 21 Pz(x)-'-, (3.3¢,d)
by = hyg(x) + 220y () + 2% () + .oy Ty = Tgg () +22Rg () + 240 (2) + ... (3.3¢,f)

Phil. Trans. R. Soc. Lond. A (1995)
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Three-dimensional boundary layers 65

Considering first the leading approximations in (3.3a—f), we obtain from (3.2a—c) the
system of equations for the symmetry-plane motion:

o Qg 1 dpy 1.0 (1 0y

Ty 0z ' Tyg dzz 7,09 \rg O )’ (3-4a)
ug Qwy Wi ugwy dhyy 2uihy, 2p, 10 (1 awo)

S0y Toy - 40— (22 3.4b)
hyg 0 hyy  highyy A hyghyy  hyy 1o OY\ry OYr (
(0/0) (ug 7o hgg) +19wohyg = 0. (3.4¢)

For a flat surface (h; = h, = 1) the system (3.4a—c) is equivalent to the previously
studied equations (2.4a,b). We may therefore derive from (3.4a—c) the description of
the inviscid singularity in the middle of the flow in a manner similar to that in the
previous section, with minor changes caused by the curvature properties of the solid
surface. The general structure of the singular solution could be seen easily from a
qualitative analysis as follows. Assume that on approach to the singularity (say as
x——0) the boundary-layer thickness tends to infinity, owing to the compression in
the cross-direction of fluid particles corresponding to ¥ = iy, > 0. If the streamwise
velocity of the compressed particles remains finite and non-zero then the enhancing
of the displacement effect (which means r,—>+00) must be supported by an
unbounded growth of |w,|. Assuming also that the process described is predominantly
inviscid, we obtain from (3.4b,¢) two approximate equations, valid in the
compression region |y —yr | < 1, |x| € 1, of the form:

(0, '/’0)% wh

hal0) 0 Tgl0) (350
000, Y haa(0) S04y (0)ry 1, = 0. (3.50)

The general solution for (3.5a,b) containing arbitrary functions g,(y), g,(¢) is

g = — 0@ O30 gu) (3.64,b)

hio(0) [ () —2) ° g(¥)—=
In this local analysis the leading terms of the series representation for g,, ¢, near
¥ = ¢, are informative on their own. Together with the requirement of regularity for
x < 0 and also smoothness properties of g,, g, (following basically from the inviscid
character of the singularity), this leads to the estimates g, ~ (¢ — )%, g, = const.
The displacement thickness, proportional to (—x)7%, is obtained now from (3.6b)
taking (3.2d) into account.

The description above, which is in line with the results of the previous section, can
easily be formalized in terms of asymptotic expansions for the solution of (3.4a—c) as
x->—0. The corresponding multi-layered structure near & = 0 includes two passive
layers above and below 3 = i, with regular expansions for u,, w,, 7, in powers of
—«, and also a collapsing locally inviscid zone defined by

n=W =) (—2)F=0(1), £=—2->0. (3.7)

Making use of Taylor expansions for the known functions (with the tensor
summation rule) of the form

hy = ay 2%, hy = by, p=p,;2l, i,j=0,1,..., (3.8)
Phil. Trans. R. Soc. Lond. A (1995)
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66 S. N. Timoshin and F. T. Smith
the solution in the inviscid zone (3.7) is expanded as
uy = Wy + B, () + ..., (3.9q)
wy = £ () + £ () + ... (3.90)
ro = E () + ..., (3.9¢)
where
Dy = — (bgo By/@go) [Co/ (Co+17)], (3.100)
c n? oo CoC2
" (co'l"nﬂz)z_ 0(;02 O(Co‘zﬂz)z’ (8.108)
Wy, = Cy 7, (3.10¢)
7o = (do/ Ty boo) [Co/ (co +71%)]. (3.10d)

The constants @y, @y, bggs Co, Cs, o in (3.10a-d) are all positive.
Consider now the next approximation in the expansions (3.3). The equations for
the unknown functions u,, w,, r; are, from (3.2a—c),

oy, Quy hio by wy dhyy | dp;
% “Po 4 90 fu _ 2020 , WP
Up 5 +u, o + h20u1w0+2h20u0w0 Ty + Az
by O (10u, auo) hyy kmﬂ) 0 (1 Qu,
_fuo O (10u; 7 0uy) [y S L A1
" aw(ro oy rop) T\, Japlnay) G

dw, owo 4 o of Ty P Prgy 1 dhy,
%5, +u, o +4h20 W Wy + Wy hoe  hZ +h20 (19 Wy +uy o) d

1 dh21 h21 dh20 2 4h12 2h’ll h21 4:h’ll
(h_zo de B, dx )00 "\ Ty,

Uy U
hZO hgo h20 o
4h hyy hygh

k20 hgo hgo
—-}mi l%_ylaw0> h_hmrl 0 (1 awo
o Y (To o 1y oY + 7o 2 ) oy \r, 0y ) (3.11b)

0
E)_x[uo 7o gy + hag(ro uy + 71 Ug) ]+ 3[rg g wy +wo o byy +wy 7y hyp] = 0. (3.11¢)

In the inviscid zone (3.7) the solution for u, is sought in the form

Uy = E*ug(n) +.... (3.12)
Then, from (3.11a), with coefficients given by (3.9)—(3.10), we have the equation
30 duyo/dn —{a+[2¢0/ (co+9%)]} ugp = 0 (3.13)
for u,,, if, in addition, @ < —1 (non-uniform terms should be incorporated if &« = — 1
in the right-hand side). The solution for (3.13) is
Uy = €19 7**"/(co+77) (3.14)

with an arbitrary constant c,,. The function u,, must be regular at finite %, however,
which gives the spectrum of eigenvalues a as

a=1m—4), m=0,1,... (3.15)
Phil. Trans. R. Soc. Lond. A (1995)
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Three-dimensional boundary layers 67

The first eigenfunction should typically be chosen in the local solution, yielding the
final result for the function %, in the inviscid region,

Uy = E2Up0(N) + ..., Uy = Cyp(Ce+77) 72 (3.16)

In a similar way the leading term of the solution for w, is determined from
(3.11b) as
wy = E () ..., wye = dyglcoe+97) 7 (3.17)

with an arbitrary coefficient d,,.

It follows from (3.9b), (3.17) that the original symmetry-plane expansion (3.3) is
only valid in a region gradually narrowing in z, on approach to the singularity,
defined by 2> < (—z)}, x—>—0. To obtain the solution in a complete 3-D
neighbourhood of the s1ngular1ty we cons1der the extension of the symmetry-plane

inviscid layer (3.7) in the region z = O(|z?) and define new independent variables of
order one, as { = —x—>+0,
n=—yo) £ (=21 (3.18)
The solution for (3.2a—¢) is now expanded, from (3.3), (3.9), (3.16), (3.17), as
=Un,O)+..., w=EWn0+..., r=ERMO+.... (3.19)
The equations for the leading terms in (3.19) are
U 3¢ )(‘)U
—U—— U+ 0, 3.20a
2ay O (2“00 bgo/ 08 ( )
U 3¢ )OW uw
U——+( U+ 3.20b
2a9 O \2a4, boo/) 08 20‘00 ( )
1 . O(UR) , a(UR)] 1 o(WR)
— L 2 — =0. 2
CLDD[UR+217 o +35¢ 3t +3 o 0 (3.20¢)

Boundary conditions are formulated from matching requirements with the solution
above, in the form

byo Wy € d
as ¢{-0, Usm,, W=-¢(—2L00 4 0 +0), (3.21a,b
¢ ° é’“00(60"'772) ¢ (cot9?)? @), )
R — ¢y dy/ [y boo(co +7%)]- (3.21¢)

It can be shown that the unique solution of (3.20a, b) with the boundary conditions
(3.21a,b) is
U = @, = const., (3.22a)

Yid,o W2+ 8ycd(co+9%) W+ 16¢5& = 0. (3.22b)

Here v = 2a,,/(#,b,,) and an implicit representation for W is used. From (3.20¢),
(3.21¢) the function R(#, ) is now determined as

R =8chd,uy byl [3y%dio W2+ 8c3(co+9%)]77, (3.22¢)

making use of (3.22a,b).

" The solution above can be obtained from rather standard procedures applicable to
the first-order quasi-linear equations (3.20a—c). The only unusual feature of the
problem worth mentioning here is the particular form of the boundary conditions

Phil. Trans. R. Soc. Lond. A (1995)
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68 S. N. Timoshin and F.T. Smith

(3.21a—c) providing the uniqueness of the solution. It follows from properties of the
characteristics of (3.20) that two terms of the expansion must be prescribed for the
function W as {0 (to incorporate in the solution (3.22b) two arbitrary constants c,,
d,,), while only the leading terms in U, R are necessary, to include in (3.22a,c) two
more parameters %,, d,.

Omitting details of the derivation of the solution, we can, however, substantiate
the appearance of the final relations (3.22a—c) from a more general viewpoint, noticing
that (3.20a—c) in fact describe one particular self-similar solution of the hyperbolic
system of inviscid equations

u ou wa_u_ u Ow ﬂaw_

et b 23a,b
Ao O @4y 02 0, (3.23a,0)

>

Qoo OX g 02

1 O(ur) 1 O(wr)
— —— —— — . .2
P +b00 3 0 (3.23¢)

It is remarkable that the streamfunction i appears in (3.23) as a parameter.
Equations (3.23a,b) are further simplified by introducing, instead of z, a new
variable s, specifying particular streamlines at any streamsurface 1 = const., so that
z = z(x,r,s) and

0z/0x = w(x, ¥, s)/u(x, ¥, s). (3.24)

Here, without loss of generality, a,, = by, = 1. In the new variables x, i, s equations
(3.23a,b) are just

wOu/dx =0, wdw/dx =0, (3.25)
with the general solution being
u=uy(Y,s), w=wy(Y,s) (3.26)

and reflecting momentum conservation in an inviscid flow without pressure gradient.
The equation of the streamlines (3.24) then gives

z = xwy(Yr, 8)/ue(Yr, 8) +2,(, ) (3.27)
and, from the mass conservation in (3.23¢), written in «, {, s variables as
O _ 2 (%) )] 2 (%) 4 S0
P Vas(uo)/[“as(uo>+ as]’ (3.28)
we obtain an expression for r in the form
_ 0 (wy) , 07
r(z, i, 8) = ro(tﬁ,s)/[xas (u_0)+ as]' (3.29)

Here ry(, s) is, along with u,, w,, z,, an arbitrary function of ¥, s.

In the local solution the leading terms of the expansions for the regular functions
Uy, Wy, 2, Ty A€ taken near one particular streamline, say s = 0, ¥ = ,. We assume
that the streamline chosen belongs to the symmetry plane s =0 (which is also
z = 0), and prescribe local symmetry of the solution with respect to i = i, as well
as symmetry of « and antisymmetry of z, w to s, to obtain

Uy = Ty+ ..., Wy=—KyS+..., } (3.30)

2o = S[k,F k(U —Yrg)2+ .. ]+ [kg+ .. ]+ g = Ky -
Phil. Trans. R. Soc. Lond. A (1995)
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Three-dimensitonal boundary layers 69

as s—>0, Yy —y,—0. Here %,, ; are all constants.
The solution appears to be singular if the leading coefficient &, in the expansion for
2, is zero. From (3.26), (3.27), (3.29), (3.30) we then have three relations

U ="Uy+..., (3.31a)

Ks 3 (®2y2_ %) — -

ng +(K01ﬁ ﬁo)w z+...=0, (3.31b)
_Ka 3Ky Koo ®

r Ko(Kg w +K01ﬁ 7 +..., (3.31¢)

which are equivalent to the self-similar solution (3.19), (3.22a-c).

One might notice that the analysis of 3-D steady flows in terms of streamlines,
although relevant to a different physical situation, is formally related to the
Lagrangian description of finite-time singularities in unsteady boundary layers (Van
Dommelen & Shen 1982; Van Dommelen & Cowley 1990), with hyperbolic properties
of the locally inviscid boundary-layer equations being used in both cases.

We proceed now to the description of some features of the singularity given by the
asymptotic solution (3.19), (3.22a—c). The expansion (3.19) is based on a small
parameter £ = —x, which was assumed positive. The solution is therefore valid in the
region < 0 only. We can, however, extend the solution into an even larger domain
merely by rewriting the expansion in terms of a new small parameter. For instance,
to derive a description valid for z > 0 we define

w=U*p* Y+ ..., w=2Wn* +..., (3.32a,b)
r=2Z3R*(p*, )+ ..., z2->+0, (3.32¢)
where new independent variables are introduced by
7* = (=) 25 = 0(1), §*=az7=0(1). (3.33)
Then, from (3.22a—c), the expressions for the leading coefficients are
U* = u,, (3.34a)
vid o WH3+8ycd (9*2 —c, £*) W* +16¢; = 0, (3.34b)
R* = 8cid,wy bog [3y3d o W2+ 8cj(n*2 —co &*)] 7. (3.34c¢)

From the definition of r(z,¥,2) in (3.2d) and asymptotic properties of the solution
(3.3b,¢) as 9* >4 00, the leading term of the boundary-layer thickness d(x,z) in the
region {* = O(1) is evaluated as

8= 2738,(L*) + ... (3.35a)
with 8o(&*) = foo R*(n*, &%) dy*. (3.35b)

The latter expression, after some routine manipulations, can be reduced to the
elliptic integral
"+ 00 d
%=mf —_F
po (PP+Vp*—sgnd,)

5, (3.36)

where . ,
v = (2c0/YId1l)* &*, Ky = (cody/Tboo) (2¢4/VIdyol (3.37)
Phil. Trans. R. Soc. Lond. A (1995)
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>0 pd d1>0
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Figure 15. Qualitative behaviour of the function u(W*) defined by (3.40). Branches 1, 2 represent
physically meaningful solutions; the first of them terminates at a singular point u,(W¥); the other
is smooth in the entire interval |u| < c0.

and p,(v) is the largest positive root of the equation
p3+vpt—sgnd,, = 0. (3.38)

The region of existence of the solution is now established from (3.34b), considering
the combination

w=co&*—n** (3.30)
as a function of W*, namely

= (y*dyy W** +16¢5)/ (8ycs W¥). (3.40)

As stated earlier, both 7y, ¢, are positive. Then, depending on the sign of d,,, two
different functions x must be considered, as shown (qualitatively) in figure 15. Only
branches 1 and 2 are relevant to our study because of the matching requirement with
the symmetry-plane solution upstream of the singularity: W* -0 as g——oc0. We
therefore consider the two possibilities in turn below.

Case 1, d,, negative

As can be seen from figure 15, curve 1, the symmetry-plane solution yu—>— o0,
W* ——0, can be continued up to the critical point

M = —3(Yldol/co)%, 5 W& = —(2¢o/7) (60/7|d10|)%' (3.41)

from (3.40). The dashed portion of curve 1 gives a physically meaningless solution.

Although the same value of u = u, predicts the appearance of the singularity at
different {*-stations for various stream surfaces * = const., a crisis of the boundary
layer first occurs at minimum ¢*, which is & = — 3(|d,olv/c,)?/(2¢,) and corresponds

Phil. Trans. R. Soc. Lond. A (1995)
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Three-dimensional boundary layers 71

to #* = 0. Thus a regular solution for the 3-D BL equations exists in the domain
|2| < z(x), where

2 (@) = (— @) (2¢0/3)H(co/vIdyol)F (3.42)
at small (—x).

The nature of the singularity can be established easily by considering the
component of the velocity normal to the singular line (3.42). Defining {* = {¥+N
with N measuring the distanoe to the singular line, the normal velocity is obtained
from (3.32), (3.34a,b), (3.42) a

= (4¢o/3y) ( 00/'}’|d10| —Cy )("7*2_00]\7)%""“ (3.43)

with N->—0 and 77* = O(|IN]}). The singularity therefore corresponds to a zero
minimum in the velocity profile uy, attained in the middle of the boundary layer.
Essentially the same singular behaviour was studied earlier in the context of 2-D flow
on a moving wall (Sychev 1980; Elliott et al. 1983). The quasi-2-D character of the
solution (3.43) in fact follows from the momentum balances normal and tangential
to the singular line. It is remarkable, however, that, in contrast with 2-D flows where
the development of an internal singularity of this kind necessitates an adverse
pressure gradient, the breakdown of the 3-D boundary layer may be due solely to the
centrifugal forces in the x—z plane supported by the curvature of the singular line
(3.42), i.e. it can occur with favourable or adverse pressure gradient.

In accordance with the quasi-2-D properties of the singularity, a logarithmic
growth in the boundary-layer thickness of the form

do/2Wybyo) (1/4/(— o)) [In (=N)+O0(1)], as N—-—0, (3.44)

is deduced either from (3.35)—(3.38) or from the known velocity field near the singular
line.

Case 2, d,, positive

At curve 2, figure 15, both W* and du/dW* are negative (from (3.40)); then W*(u)
is unique and regular on the y-axis. This in turn leads to the conclusion, from (3.345,
¢), that the solution for the original boundary-layer equations is regular in the entire
3-D neighbourhood of the singularity, excluding only the half-infinite portion of the
symmetry plane z =0, x > 0 (the downstream half). On approach to the symmetry
plane at x > 0, however, we have that, as z—+0,

w = F (8¢3/y*dyo)i[cox— (¥ — Yol li+... if (=) <cox (3.450)
and w—>0 if (Y—)>cpu, (3.45b)

from (3.22b), (3.34b) and symmetry properties of the solution. From (3.45a) we
conclude that a jump in the cross velocity or, in other words, a collision of boundary
layers, occurs at the symmetry plane downstream of the singular point x = 0, the
‘strength’ of the collision being proportional to a%. It is also interesting to note that
the region of collision has quite definite boundaries ¢ —yr, = £ (c,%) and that the
number of streamlines involved in the collision grows faster with distance from the
origin x = 0.

One more fundamental feature of the discontinuous solution discussed above is the
thickening of the boundary layer near the symmetry plane. As before, an appropriate
estimate might be derived either from the general relations (3.35)—(3.38) or from
evaluating the function » = 0y /0y (and then calculating the vertical coordinate y of the
fluid particles in the limit z— 0). In the latter case a more accurate analysis of the
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cross velocity is necessary near the boundaries ¥ — ¢, = £ (c, )%, because the major
contribution to the displacement effect at small |z| happens to come from the thin
layers i — i, F (¢o ) = O(|2iz%). The final relation for the boundary-layer thickness
in the vicinity of the symmetry plane is then

Cody Inlzl | 3ln(c,x) L[t e .7
aoboo{_\/(cox)+§\/(cox)+\/(cox)[_ln + ln2}+...}, (3.46)

2 ydy, 2
which is valid as x —>+0 (i.e. downstream of the symmetry-plane singularity), with
2|0 and |2| < 2%

O(x,2) =

4. Development of the discontinuity in the 3-D boundary layer

In this section we present results of a numerical solution of the original 3-D BL
formulation (1.7a—d), (1.9a—c) for one particular case of the dent surface geometry.
The solution seems to contain, as we intend to show, a discontinuity along the
centreplane that starts from the inviscid internal breakdown of the smooth flow
described above in §§2 and 3.

There are two major reasons for the numerical treatment of the full equations to
be made in addition to our study of the symmetry-plane flow in §2 and the
asymptotic analysis of the 3-D neighbourhood of singularity in §3. First, the
description of the centre-plane flow was performed in Crocco variables, implying
(quite arbitrarily) monotonicity of the streamwise velocity profile. An independent
treatment based on cartesian coordinates therefore provides a necessary confirmation
of the approach taken in §2. Second, only solution of the full initial-boundary-value
problem can select one of the two singular forms suggested by the local study in §3,
namely the one with a downstream discontinuity/collision or that with breakdown
at some singular line.

The shape of the dent considered in this section is given by (1.10a, b). Owing to
symmetry with respect to the plane z = 0 the computation domain is defined as x > 0,
y 20,0 < 2z < by/m. The value m = 4 was taken to provide a smooth entry solution
at the leading and lateral boundaries x = 0+, z = by/m—0 respectively. Also, the
dent is assumed to be narrow, b = 0.2, but sufficiently deep, A = —0.4, to make the
flow strongly 3-D and nonlinear. The corresponding symmetry-plane flow is described
in §2b, i.e. the case h = —0.4, h, = h/b? = — 10, and some features of the solution are
shown in figures 13, 14 and 16. According to our symmetry-plane calculations, the
inviscid singularity in the middle of the BL develops at x = x; = 0.5934. The value
of the streamwise (crosswise) component of the pressure gradient is negative
(positive) in the region 0 < x < x, = 0.6625 (which contains the singular point), as
follows from (1.7d), (1.10a, b). Hence the cross-flow velocity is directed towards the
centreplane, at least near the boundaries z = by/m, © =0, and the boundary
conditions at x =0, 0 <z < by/m and x > 0, z = by/m can be formulated as

u=y, w=0. (4.1)

The description of the numerical method is given in Appendix B. From the principle
of zones of influence, the finite-difference approximation of z-derivatives in the
momentum equations (1.7a, b) must be adjusted to the flow direction (which is found
to be towards the plane z =0 throughout the region 0 < x < x,). There exists,
however, some possible freedom in the approximation of the term dw/0z in the
continuity equation (1.7¢), and this question is also addressed below.
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T,,0

J W OJ'IS Xs

Figure 16. Streamwise skin friction 7,(x,z=0) and displacement thickness d&(x,z =0) in the
centreplane of the half-infinite dent (1.10) with 2 =—0.4, b = 0.2, m = 4. Comparison is made
between the symmetry-plane calculations in Crocco variables in §2b6 (shown here with continuous
lines) and numerical solution of the full 3-D BL equations in cartesian form, obtained with a
uniform grid and the outward approximation (4.2), as described in §4. Grids used in the full 3-D
calculations have: a, [Az, Ay, N,, N,] =[0.001, 0.025, 280, 121], x, [0.001, 0.05, 280, 121]. o,
[0.002, 0.05, 280, 60], @, [0.002, 0.05, 280, 30]. The vertical dashed line marks the position of the
singularity, x, = 0.5934.

For convenience we divide the calculations into three sets as follows. In the first
series, computations were performed with a uniform grid in the z-direction and an
approximation outward with respect to the centreplane approximation for dw/dz in
the continuity equation (1.7d), so that in effect

(Qw/02) (x,y,2) = [w(x,y, 2+ Az) —w(x, y,2)]/Az. (4.2)

The results were tested with respect to the influence of the total numbers N,, N, of
mesh points along the z-axis and y-axis respectively, and of the steplengths Az, Ay.

Comparison of the calculated flow functions at z = 0 with those obtained in the
symmetry-plane study in §2b is shown in figure 16. We notice that the results are in
a good agreement in the main portion of the flow 0 <z < 0.5 even with only
moderately small steps Az, Ay and as little as 30 z-points. The trends in the solutions
for 0.5 < x < x,, closer to the breakdown, seem to confirm the suggested locally
inviscid scheme of the singularity, but quantitative comparison here is not
completely satisfactory. The results in figure 16 suggest that the computational
solution in the near-singularity region is highly sensitive to the values of Az, Az. Also,
the refinement of the y-grid is not as essential here as the enlarging of the domain in
the vertical direction, in view of the fast-growing displacement thickness.

In the second series of calculations the same outward approximation (4.2) as before

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

—C

(=)
= T+
g
xn
&~
Y
~=
<
3
2 %
=
@
S
5 o -
& % -
% - e E

o

L
(=)
<
-
uz_mm_mm—m_:uuz_m_m__uw >.Hm H Uom WZO_.—.wmeé._.
AVDISAHd
“IWILLYWIHLY W TVAOY dH L 1vDIHdOSOTIHd

S3IDON3IDS
ONIY3IINIONT B
TVYDISAHd
“IVDILVWIHLIVIN

X
Figures 17 and 18. For description see opposite.
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is used. But, in order to achieve higher resolution near the centreplane region without
significant increase in the total number of z-points, an additional stretching of the
lateral coordinate is included. So a new variable is defined as

Z=(a;2+a,2%)/(a;+a,?) (4.3)

with constants a,, such that the transformation remains regular, and mesh points are
uniformly distributed along the z-axis. In addition, the streamwise steplength Az is
taken about one tenth of the previous size to make it of the same order of magnitude
as the smallest Az-step. An immediate improvement of the computational description
in the near-breakdown region is evident in figures 17 and 18, from comparing, for
instance, the solutions obtained for uniform and stretched grids with equal numbers
of points N, = 121.

As concerns the flow beside the centreplane, the results obtained with the above
two series are essentially close in the domain 0 < z < z,. Difficulties are, however,
encountered in calculating the downstream portion of the BL at x > x,. They stem
basically from a breakdown of the finite-difference approximations in the region with
a high level of displacement thickness. The loss of accuracy first occurs at small z near
x = x, in the form of large-amplitude small-scale oscillations in the cross-velocity
profile w(y) near the upper boundary y = y,... In the subsequent x-marching
procedure, oscillations are transferred further outward from the centreplane, by
means of the outward derivative (4.2), resulting in a damaged numerical solution
within a wedge-like zone in the x—z plane downstream of x = x, 2 = 0.

Our main results were obtained in the third series of calculations, based again on
the stretching (4.3). However, in contrast with the previous sets, an inward
approximation of dw/0z is used in (1.7d), defined by

(Qw/02) (x,y,2) = [w(x,y, z) —w(x,y,z— Az)]/Az] (4.4)
effectively.

The influence of (4.4) on the symmetry-plane solution upstream of the singular
point appears in figures 17 and 18 in higher values of the displacement thickness and
smaller values of the skin friction. Up to z &~ 0.588 the error in reproducing the centre-
plane solution of §2b tends to be approximately of the same magnitude as in the
second set but with opposite sign. The last feature seems to be in line with the first-
order accuracy of the numerical method. Also, instead of the failure of solution
encountered in the previous two sets, the displacement thickness now develops a
strong maximum at the singular position, and can be continued downstream. This
maximum in §(z,z) grows, and presumably tends to infinity, with refinement of the
steplength Az, but to trace this process accurately and in full a further enlarging of
the vertical scale of the calculation domain and diminishing of Az are necessary.

General properties of the BL flow beside the centreplane are illustrated in figures

Tigures 17 and 18. The flow functions in the symmetry plane of the half-infinite dent near the
singular point: figure 17, streamwise skin friction; figure 18, displacement thickness. The results of
the centreplane calculations of §2b are shown with continuous lines. Also shown are the results
obtained in the three sets of calculations for the full 3-D BL equations: a, uniform z-grid and the
outward approximation (4.2), the grid has [Az, Ay, N,, N,] =[0.001, 0.025, 280, 121]; +, x,
stretched z-grid (4.3) and the outward approximation (4.2) with the grids [0.0002, 0.05, 280, 121],
[0.0002, 0.05, 280, 201], respectively; o, @, ©, the stretched grid and the inward approximation
(4.4) with the grids [0.0002, 0.05, 280, 121], [0.0001, 0.05, 280, 201], [0.0001, 0.05, 280, 241],
respectively.
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Figure 19 Figure 20
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Figures 19-21. Spanwise distribution of the flow functions on the surface of the half-infinite dent
at various z-sections: figure 19, displacement thickness &(z,2); figure 20, streamwise skin friction
7.(%,2); figure 21, crosswise skin friction 7,(,z). The z-positions are marked near the corresponding
curves; —, the results in the region 0 < x < 0.5 obtained in the first set of calculations in §4, the
grid has [Az, Ay, N,, N,] = [0.001, 0.025, 280, 121]; ——~, the results in the downstream portion
x = 0.5 obtained in the third set of calculations, the grid has [Az, Ay, N,, N,] =[0.0001, 0.05, 280,
201]. Comparison between the two calculations is made at = 0.5. Also shown with a are the
symmetry-plane functions from §2b; o, the results from the second set with the grid parameters
[0.0002, 0.05, 280, 201]. The inset in figure 20 suggests the development of the finite slope in the
streamwise skin friction distribution near the centreplane downstream of the breakdown of the
smooth solution at x = z, = 0.5934.
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0 0.1

—0.45

Figure 22. Near-centreplane behaviour of the crosswise skin friction 7,(z,2) plotted against z, at
various x-sections, suggesting the crossover from the regular solution at x < x, to one with the
discontinuity/collision at x > x,: -—, the results of the full 3-D calculations in the third set of §4,
the grid has [Az, Ay, N,, N,] = [0.0001, 0.05, 280, 201); + + +, the same grid as before but with
N, = 241; ——, the limiting tangent at z—0 as calculated from the symmetry-plane equations
in §2b.

19-21. Here the continuous curves represent the solution at x < 0.5 obtained with
the uniform z-grid, and the dashed lines refer to the downstream flow at x > 0.5
calculated in the third series. The results from the two different sets can therefore be
compared at x = 0.5 and they demonstrate good agreement in the displacement
thickness d(x,2) and in the crosswise skin friction 7, = dw/0y (y = 0) distributions.
There is, however, some divergence in the prediction of the streamwise skin friction
7, = 0u/dy (y = 0), with maximum relative deviation being of the order of 3%.

The major 3-D effect in this configuration appears in the strong deceleration of the
near-centreplane flow, starting at « &~ 0.3 and continuing up to the breakdown at
x = x4, regardless of the favourable streamwise pressure gradient (figures 16 and 20).
This is accompanied by the simultaneous growth of the BL thickness with its
pronounced maximum at the centreline in figure 19. The spanwise extent of the
deceleration region is roughly estimated, from the position of the maximum in 7, and
minimum in J, as 0 < 2 < 0.2 (see figures 19 and 20).

In spite of the breakdown of the smooth solution at x = x, z = 0, the calculations
can be continued downstream of z, at z > 0, and remain valid there, owing to the
negative values of the cross-velocity in the entire BL. We usually terminated
computations at & = 0.66 in fact, where the new structure of the flow field arising
from the breakdown can already be seen in the numerical solution. For instance,
finite limiting values of the lateral skin friction at z — 0 indicate the development of
the discontinuity along the symmetry plane at x > x,, similar to, for instance,
Howarth (1951), Stewartson et al. (1980) and Timoshin (1991). This property is
illustrated in figure 21 and in more detail in figure 22. The dashed lines in figure 22
are shown for an additional comparison of the symmetry-plane solution in §2b with
that obtained in the full 3-D formulation.

Another feature typical of BL collisions is in the finite slope of the streamwise skin
friction 7, at z— 0, when compared with the regular symmetrical behaviour upstream
of the singularity; compare the solutions at = 0.1-0.5 and « = 0.66 in figure 20.

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

/\
A

' \

e ol

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
' \

y 9

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

78 8. N. Timoshin and F. T. Smith

0.3 1

8—3

1
0 0.02
z

Figure 23. The function &(x,z)™® plotted against z at two z-sections is shown for the comparison
between the numerical solution of the 3-D BL equations and the local theory in §3; 1, x = 0.56;
2, x = 0.592. The symmetry-plane results of §2b are marked with a; x, the second set of the full
3-D calculations in §4 with the grid [Ax, Ay, N,, N,] = [0.0002, 0.05, 280, 201]. The other results
are obtained in the third set: —, with the grid [0.0001, 0.05, 280, 201]; o, [0.0002, 0.05, 280, 121];
e, [0.0001, 0.05, 280, 241].

Hence, in accordance with the analytical predictions in §3, the inviscid symmetry-
plane singularity gives rise to a BL collision downstream. Quantitative comparison
between the theory and computations, based on the skin-friction study, seems to be
difficult in our case, however, for the skin-friction development is contained in higher
approximations in the local theory. Instead, we consider the distribution of the BL
thickness near the singular point x =, z=0. As follows from the asymptotic
relation (3.35a), the function y(z,2) = 6 3(x,2) has a finite slope in z at the critical
station x = x4 so that

x(x,2) =20,(0)%+... as 20, x=ux, (4.5)

and 6,(0) is a positive constant. The computed function y is depicted in figure 23 at
the two successive cross-sections x = 0.56, x = 0.592. The first of them is far ahead
of the breakdown, and so the minimum value of y is non-zero. However, in the second
section, which is much closer to the singularity, a linear portion of the graph appears
clearly at small z. It is remarkable that the numerical results from different sets
predict almost the same curve at x = 0.592 (very near x = x), whereas the difference
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]
0.54 0.66
Xs

Figure 24. Distribution of the displacement thickness 8(x,z) plotted against x at various values
of z in the 3-D neighbourhood of the singular point x = z, = 0.5934, 2 = 0. Curves 1-6 refer to
2=224x10"%, 5.025x107% 1.225x107%, 6.81x107%, 4.36x107%, 2.09x 107, respectively;
—, numerical results from the third set with the grid [Az, Ay, N,, N,] = [0.0001, 0.05, 280, 201];
x, the results from the third set with grid [0.0002, 0.05, 280, 121]. Also shown are the results from
the second set: o, with the grid [0.0002, 0.05, 280, 201]; e, the same grid but with N, = 121.

in the data upstream is quite pronounced. This property seems to be due to the
particular nature of the displacement effect in the flow considered, as explained in §3,
because the main contribution to the BL thickness near the breakdown comes from
the locally inviscid zone in the middle of the flow. This zone is likely to be captured
well in our calculations referred to in figure 23. Another contribution, from the upper
portion of the flow above the inviscid one, can be reproduced only with further
enlarging of the y-scale of the computation domain. Inaccuracy in evaluation of the
latter term is presumably suppressed by the strong growth of the main contribution
as ¥ > x,, but leads to some scattering of the results upstream.

Downstream of breakdown, the theory of §3 predicts a logarithmic expansion of
the colliding layers as z— 0, from (3.46). A precise proof of this logarithmic law could
hardly be derived from numerical data, first on account of the inevitable numerical
inaccuracy in the solution and secondly because of the significant influence of the
next terms in the local relation (3.46). Nevertheless, the trend itself, i.e. the growth
of the BL thickness near the centreplane, can be seen in figure 24, and that seems to
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Figure 25. Comparison between the results of the numerical solution of the full 3-D BL equations
and the analytic predictions in §3. The function B(z, z) defined by (4.6) plotted against z, at various
x: +,numerical results obtained in §4 in the third set of calculations with the grid [Az, Ay, N,, N,] =
[0.0001, 0.05, 280, 201]; a, the limiting value B, calculated from the symmetry-plane solution in
§2b according to (4.8).

have the qualitative background of the theory. Further, an attempt at a quantitative
estimate is shown in figure 25. According to (3.46), the function B(z, z), defined as

B(x,z) = —In 2| /[0(x,2) V/ (x— )], (4.6)

should have a finite limit, B(x,z) > B,, as x—x,>+0, z>+0 and |2| < (x—z,)%. The
limiting value of B, is a constant,

By = u, boo/(coédo)’ (4.7)

which remains arbitrary in the local theory.

The crosses in figure 25 represent values of B(z,z) obtained from our numerical
solution by making use of (4.6). On the other hand, from the theory of §3, an
independent estimate for the constant in (4.6), (4.7) can be deduced from the
symmetry-plane solution ahead of the singularity, because the displacement-
thickness growth, on approach to breakdown, obeys the local relation

1

8= (n/By) (—x)t+..., (4.8)

from (3.24d), (3.7), (3.9¢), (3.10d). Thus from the symmetry-plane calculations in §25
we derive an estimate B, = 6.3. As is shown in figure 25, this turns out to be at least
in order-of-magnitude agreement with the results of the full 3-D BL calculations.

5. Discussion

A number of suggestions and further questions stem from our study, we believe.
We first address the structure of fully developed BL collision at a finite distance from
the breakdown of smooth solutions. It is convenient to treat the flow behaviour in
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Mises variables, assuming that the streamfunction can be properly defined at least
locally near the centreplane. Then, as follows from the analysis in §3, the cross-
velocity profile near the symmetry plane contains a portion of non-zero limiting
values, such that as z—+0, for x > «,,

w(x, r,2) = Fwele, ) +... i yYr(x) < < iy(x) (5.1)

where i, ,(x) define the boundaries of the region of collision. Above and below the
collision reglon the cross-flow remains predominantly regular, leading to a usual
centreplane expression of the form

w(x, ¥, 2) = z2Wo(x, ) +... if ¢ <y(x) or o> i(x). (5.2)

The growth of the BL thickness appears as z—>0 from the compression of fluid
particles near the boundaries yr, ,(x). One may suggest from analysis of the crosswise
skin-friction distribution, in ﬁgures 21 and 22, that the lower boundary of the
collision domain reaches the solid surface (y =0) at some distance from the
singularity in the symmetry-plane solution, resulting in an intersection of surface
streamlines at x > x, > x,, say. The position of such a ‘surface streamlines’
breakdown remains unknown within the framework of this paper, as well as the
precise structure of the corresponding near-wall solution. It is also unclear whether
the upper boundary yr = i,(x) always remains in the middle of the flow or can be
shifted towards the outer edge of the boundary layer at some other point x = x, >
xg. If both values of z; , are finite, the colliding flows further downstream will have
finite displacement thickness along the symmetry line.

A theory of the origin of discontinuity based on an assumption of bounded BL
thickness everywhere except at the very first singular point was proposed in
Stewartson ef al. (1980). We argue, however, that this is unlikely to be the case in
their particular problem (or others), because the breakdown of the smooth solution
is initially related to a collision of near-wall fluid particles, according to SS, CSB.
Hence even if the lower boundary of the colliding layer ¢, () coincides with the solid
wall downstream of z, i.e. #; = &, the upper boundary ir,(x) should be located in the
middle of the flow, at least along some finite segment of the downstream z-axis. The
latter implies the same as in §3, i.e. logarithmic thickening of the near-centreline
layers.

Although the inviscid internal breakdown has been identified in §2 as the most
typical one, taking into account its structural stability to variation of the local/global
conditions, alternative routes for discontinuity development can presumably be
obtained in more special cases, starting for example from the blow-up singularities
studied in §2 or with those described in Smith & Walton (1989) and Walton & Smith
(1992). Also, the effects of non-symmetry, compressibility, turbulence modelling,
upstream/downstream moving walls and unsteadiness can provoke a variety of
singularities in a 3-D BL flow.

Finally here, unbounded thickening of the BL along the discontinuity inevitably
implies viscous—inviscid interaction affecting the flow field in a narrow neigh-
bourhood of the centreline, most probably with the further prospect of the origin of
an open-type separation. Another type of BL breakdown predicted in §3, with blow-
up in the middle of the flow due to strong centrifugal forces, also deserves attention
in view of an intriguing possibility of internal separation in steady 3-D flows, similar
to 2-D steady separation on a moving wall and 2-D or 3-D unsteady separation.
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However, detailed analysis of interaction/separation is beyond the scope of the
present paper.

We should recap that overall the theory and computations in §§2—-4 seem to be in
broad agreement on the 3-D BL flow properties. They tend to confirm the frequent
occurrence, and structural stability, of the singularity of internal mid-flow form in
cases of favourable or zero pressure gradient, with the Goldstein singularity
remaining the most likely outcome under an adverse gradient. The combination of
analytical and numerical work appears to be very helpful in shedding extra light on
the 3-D flow response. It is felt that more such studies should be made because 3-D
BLs are clearly of importance in reality, whether in an interactive or non-interactive
setting. Not least in this context is the application to BL transition, for example in
describing the lift-off of lambda vortices, as discussed in §1.

Support from United Technologies, through Dr M. J. Werle, for S.N.T. and F.T.S., and from the
Royal Society, for S.N.T., is gratefully acknowledged, as are computational facilities through
SERC, including ULCC access.

Appendix A. Numerical method for the symmetry-plane equation

For the purpose of numerical treatment the symmetry-plane boundary-value
problem was further transformed by introducing new variables

PE.m) =22, W(E, ) =w,/F(y), (A1)
where F(y) = (1+c2p?)2 (A2)

and the constant ¢ was chosen as ¢ = 1.
The boundary-value formulation (2.4)—(2.7) is then

nF%LgV+F2W2 i%O(F@LV+%§W)+2p1=¢F%vl—/+2¢g§%g/+¢dj . (A3b)
dy/on = ¢7%, (A3c)

at £=0, ¢=1, W=0, (A3d)

at 7 =0, 0p/dy=2dp,/df, W=y=0, (A3e)

as n—>+0, ¢—>1, W->—=2c[5p,(s)ds, y—n—>75,(&). (A3f)

Thus, in the variables ¢, W the nonlinearity in the wall boundary condition (2.5a) is
removed. Also, instead of the trivial condition for w, at the outer edge of the
boundary layer (2.5b6), the leading term of the asymptotic solution as y—+co is
incorporated in (A 3f).

A finite-difference approximation of (A3a,b) second-order accurate in both
£, 7 was used, with constant step Ay and variable step in £ (although the variable
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£-step was used in test calculations only to clarify the particular type of
singularity encountered). With (@1, Wt), (42, W?) being known functions at (§ = &,

n=(k—1)Ap), (§ = &, n = (k—1) Ap) respectively and &, = &, +d,, the solution at the
next step §; = §,+d, was evaluated from the equations

d d
¢17<z+1(8¢;< ¢K+1+¢K 1+4A77 pgo 3))+¢17<L(_16¢g_8(A77)2d_377K+16(A”)2FKW3K)

d 2 .
woi (st at— gt - at Lo @) = "G aig- a8, asa)

n 3 3 1 dpo
WK+1 (FK¢K+A77¢K(d,'7) + A dg (53)E<)

2
(= 2b gt Qg (T) — AnrGen e R
7? 5

e () )+ (- (T) e n)

F

— (0 (206 + 5 @ -, 1) (A4b)
5

dy = d2+2d,dy, d, = (d,+dy)?, dy=d,dy(d,+d,). (Ade)

Here a simple iterative procedure was applied to handle the nonlinearity in the
equations. The coefficients in the nonlinear derivatives at £ = £; were calculated
based on the solution (@2, W?) from the previous iteration, therefore leading to linear
equations for (@7, W?) at the next iteration.

Equation (A 3¢) was approximated as

Yerr— Y = A0 ($7) 7+ (92)7H), (Add)

and a three-point approximation of the first derivative in # was used to evaluate the
crosswise skin friction
7, =1, 0(WF) /0 (= 0), (A5)
while the streamwise skin friction is just 7, = (472
The numerical method above was found to be quite efficient in regions where the
solution is smooth. The number of iterations necessary to provide a solution with
accuracy X, [(¢2—@")?+ (W2 — W™)?] < 10~° was typically 3-5 for the regular solution
but increasing to 1520 on approach to the singularity. Further details of the grids

used are given in the legends to corresponding figures.

Appendix B. Numerical method for the full 3-D BL

A relatively simple and straightforward method was used for the full 3-D BL,
governed by the three equations (1.7a—c) with pressure (1.7d), boundary conditions
(1.9a—c) and hump shape (1.10a,b). The approach is an explicit one extending an
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approach for 2-D flows developed by the late Professor R.T. Davis (private
communications, 1982-1984). Thus the three equations are discretized as

Wy (g — Wgpe) [ (AX) + 00 (W 1y — Wy ) [ (28) + Dyl (g — g1 )
+ (1 —dr) (ugpeq — uge) 1/ (A2) + pa = (Wjre— 2 +u51)/ (Ay)?, (B 1)
(Wi — Dgye) [ (A%) + 051 (Dy 1 — By_1) [ (2AY) + Wy [ dr (W — W)
+ (L —=dr) (W1 —wipe) 1/ (B2) +p2 = (w4, — 2wy twi_y,)/(Ay)?,  (B2)
(Wi Uy g — Ugg — Uy Wi_1i)/ (282) + (05 —v5_15) / (Ay) + [dr(wyy + w;_yy,
— Wiy — Wy_y—1) + (1= dr) (Wypsy + w515 —wy—w_y,)]/(282) = 0. (B3)

where the overbars refer to known velocity values at the station x;_; previous to the
current calculation station z, = (i — 1) Az. Here Az, Ay, Az are the suitably small step
sizes in z,y = (j—1) Ay, z = (k—1) Az, the subscripts j, k refer to function values at
y, z nodes respectively, and the direction coefficient dr = 1, 0 depending on whether
W;;, is positive or negative. In the motions of present concern dr is mostly zero (see
§4), which simplifies the computations, for example regarding the sweeping direction
in z, although as is also discussed in §4, dr was replaced by unity in (B 3) for some
runs.

The finite-difference equations (B 1), (B2), for j = 2 to J—1, and (B3) for j = 2 to
J, are combined with the appropriate discrete versions of the boundary conditions on
{1y, vy, Wy, (wy—u,_q), W,y where (J —1) Ay denotes the suitably large outer bound-
ary chosen, to yield (u,», w);, for all j by a single matrix inversion, at each k, covering
the required z range in the k-decreasing direction if dr is zero as above. Then the
procedure is moved on to the next x station. The starting conditions, at x =0, 1 =
1, are inserted analytically, and likewise for pz, pz in (B.1), (B.2), modelling dp/0z,
0p/0z, which are evaluated analytically at the ¢, k location in x, z. The scheme above
is only first-order accurate in z, z, owing mainly to the decision to linearize the inertia
terms for the sake of simplicity. Earlier tests on 2-D and 3-D flow calculations
suggest, however, that the scheme works well and accurately even for not excessively
small step sizes. We note in passing the attractive alternative of using (B1) to
determine u;;, directly, then (B 2) for w;,, then (B 3) for v, if the »0/dy terms are
discretized differently. Stretching in z was also introduced readily, as described in §4,
where the computational results are presented.
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